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The structure of a shock wave in a fully ionized gas 

By J. D. JUKES 
Atomic Enerfy Research Establishment, Harwell, Berkshire 

(Received 2 August 1957) 

SUMMARY 
The structure of a plane shock wave moving through a 

completely ionized plasma of protons and electrons is calculated. 
It is assumed that the two species of particles behave as two gases, 
each separately in a quasi-equilibrium state corresponding 
generally to two different temperatures. Navier-Stokes type 
equations with coefficients of viscosity and thermal conductivity 
appropriate to the two species are solved by numerical iteration. 

For very strong shocks it is found that both the velocity of 
electrons and protons and the temperature of the protons change 
in a distance about twice the mean path for momentum transfer 
between protons in the hot (shocked) gas. The electron 
temperature changes in about eight of these mean free paths, 
causing a relatively wide zone of hot electrons at low density ahead 
of the usual velocity shock-front. The density and temperature 
gradients of protons and electrons create an electric field. 

1. INTRODUCTION 
A study of the structure of a shock wave requires consideration of the 

dissipative effects of viscosity and thermal conductivity. Suitable macro- 
scopic equations can be derived from kinetic theory once the Boltzmann 
equation is solved for the velocity distribution function. Generally this 
function can only be found by a method of successive approximation with 
the Maxwell (equilibrium) distribution as the zero order term (see 
Chapman & Cowling 1939). T o  ensure convergence of this solution it 
is necessary for the ratio of the mean free path for momentum transfer 
in the fluid to be small compared with some characteristic length in which 
the distribution function changes appreciably. This is equivalent to an 
assumption of quasi-equilibrium conditions. Zero order terms give 
equations for a frictionless fluid and the result of a vanishingly thin shock 
front. First-order terms yield the familiar Navier-Stokes [N-S] equations, 
containing the effects of viscosity and thermal conductivity in two coefficients, 
p and A. 

Becker (1923) solved the N-S equations assuming p and h to be constant. 
Later, Thomas (1944) included a temperature variation in p and h appropriate 
to a model gas of hard-sphere elastic molecules. This inclusion is important 
for strong shocks where there are large temperature and density changes 
because these variations lead to large changes in p and A. With this 
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inclusion, it is found that the shock front thickness tends to a finite limit 
as the Mach number M tends to infinity; a result not obtained with the 
simple Becker solution. 

Mott-Smith (1951) has criticized the application of the N-S equations 
to strong shock waves ( M  > Z), where both experiments and more refined 
theory suggest that physical quantities and the distribution function change 
appreciably in distances only once or twice the mean free path for momentum 
transfer between molecules. It is unlikely that the expansion solution 
of Chapman & Cowling can be valid in these circumstances. Mott-Smith, 
although still only dealing with a gas of molecules of one type, assumes 
a distribution function composed of two Maxwellian distributions corre- 
sponding to upstream and downstream temperatures. Using these, he 
solves a transport equation. His theory predicts shocks whose limiting 
thickness as M --f 00 is rather more than that of Thomas’s theory. 

The present paper develops the N-S equations for a fully ionized gas, 
such as mgy be encountered in some electrical gas-discharge. The treatment 
is similar to that of Thomas with the important difference that such a plasma 
is a mixture of two species of charged particles. Each species is assumed 
to behave as a gas in a quasi-equilibrium state. There is a separate, 
approximately Maxwellian, distribution for each gas, corresponding in 
general with two different temperatures for the proton and electron gases. 

In  the light of Mott- Smith’s results this treatment should follow Thomas 
in arriving at a lower limit for the shock thickness, at the same time yielding 
the essential qualitative features of the shock front structure. 

2. PLASMA PROPERTIES 

The calculations are restricted to a plasma of protons and electrons 
in which simple equations of state are valid (Spitzer 1956). Any externally 
applied electric or magnetic fields are neglected. The equations of state 
are then, 

p ,  = n, KT,, pi = nikTi, (2.1 a) 

where k is Boltzmann’s constant, p ,  n and T are the partial pressures, the 
number densities and the temperatures of electrons and protons as 
indicated by the suffices (i is for the heavy ion, a proton in this case). For 
a gas of single particles with no internal degrees of freedom the specific 
heat ratio, cpIc, = y, is 513. In the hydrodynamic equations it will be 
supposed that the electrostatic force acting on the plasma is small compared 
to the fluid forces arising from the pressure and momentum. This 
assumption will be justified later when the electric field has been estimated. 
The assumption implies that the charge separation is negligible, so that to 
good approximation, 

ni =n, = n. (2.1 b) 
Because protons are nearly two thousand times heavier than electrons, 

the protons are chiefly responsible for the transport of momentum (viscosity) 
while the electrons are chiefly responsible for the transport of random, or 
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thermal, energy. It is therefore reasonable to take the viscosity to be a 
function of proton temperature alone and the thermal conductivity a function 
of electron temperature alone, provided 

dT, dTi 
dx dx 

Ae- $ A i - -  

and 

where A, denotes the thermal conductivity due to electrons alone, and so 
forth, and ui is the streaming velocity of each species. The results are 
found to satisfy these conditions except possibly for very strong shocks 
( M  > 10) where the second condition may not hold at the beginning of 
the shock. But the electron viscosity is there much smaller than the average 
viscosity throughout the shock so the qualitative results should not be 
invalid. The dependence of the coefficients p and h on the temperatures 
under the above conditions has been found by Chapman i% Cowling and 
others. 

As in other problems of dissipation in gases it is convenient to compute 
the Prandtl number P = pC,/h of a plasma under equilibrium conditions. 
An exact treatment by Chapman & Cowling for a proton-electron plasma 
yields P = 0.065. This is much less than is found for a one-particle gas 
(w 0.6) because the mobility of electrons far exceeds that of protons by 
a factor of order (mi/m,)li2 = 43 when electron and proton temperatures 
are equal. 

There is a slow interchange of energy between protons and electrons 
at different temperatures. Post (1956) gives the rate of energy transfer 
in collisions from a single proton to an electron gas at temperature T,. 
By integrating over a Maxwell distribution of protons of temperature Ti, 
the rate of heat transfer per unit volume between the two gases is found 
to be 

m n2 
e410g,A--"- IT,- 7'1, mi TS12 

where log,A is the Coulomb logarithm of Spitzer's plasma theory (1956). 

3 .  EQUATIONS 
Suppose the plasma flows in planes parallel to the x-axis from - cc 

to + co and that conditions of thermal equilibrium exist at upstream and 
downstream infinity, denoted by the points (1) and (Z), with the usual 
Rankine-Hugoniot relations between them. Assume a steady state shock 
wave exists somewhere in the flow and consider each species of particle 
separately. For the j th species, the rate at which heat is supplied to an 
elemental unit volume moving with the flow is given by the mobile 
derivative, 
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where uj = u = Auid velocity, and nj = n = number density. Carrying 
out the transformation from the moving axes to a system of axes fixed 
relative to the shock wave, the equations of energy transfer become: 

K is a function of the atomic constants, and is found from the heat transfer 
term (2.2) to be (32n-/m, K)1'2e4(m,/mi)logA. 

The momentum equation, neglecting electrostatic forces, is 
du 

(3.4) 

where pt  = p ,  +pi is the total pressure and 

is the mass flow per unit area. The continuity relation is 
m = p t u  (3.5) 

dmldx = 0. (3.6) 
The integration of (3.4) and elimination of the constant of integration 

by means of the conditions at x = 2 00 gives 

(3.7) 
4 du 

(3.2), (3.3), (3.6) and (3.7) are the fundamental equations. We have, also, 

and from (3.5) and (3.6) 

P t + P t U 2 -  3 P &  = ( P t + P t U 2 ) 1  = ( P t + P t U 2 ) , *  

pt = n(mi + me), 

pt u = constant = num, = n, u1 mi, 

pt = nk( Ti + Te) ,  

(3.8) 
and therefore nlul dn _ _ - -  du 

Zi- n2 dx' (3.9) 

Add (3.2) and (3.3) and substitute p(du/dx) from (3.7) to get the total 
energy equation 

(T,+ Ti) - ( T ,  + Ti) - dx "1 
Substitute from (3.8) and (3.9) and then integrate (3.10) with respect to x 
to give 

2nykT,u, nImiu: m.uYny dT 
-- +- 8 1 1  +A$ +const. (3.11) 

3 
Zuln,k(T,+ Ti) = - 2n2 n n 

At x = - 00, Ti = T ,  = T,, and the elimination of the constant gives 
2n: k T ,  u1 ~ 1 "  mi us +-- n 

3 
-u,n,K(T,+ Ti)+ 2 
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On substituting from (3.7) to (3.9), equations (3.3) and (3.7) become 

and 4 n u  dn n2 m.u2 
j p y ( ~ )  = 2 n l k T l + n l m i u ~ - n k ( T , + T i ) -  u. n (3.14) 

From now on we work with (3.12), (3.13) and (3.14), making them 
dimensionless by the substitutions 
v = n/n,, 3 TJT,, B = TJT,, P G pL1 c,/X,, T = p,/p,,, < = x / l ,  
where 1 = mean free path of simple kinetic theory for ions ahead of the 
shock so that 1 = 4p,/(3n,mi c,), c, being the velocity of sound ahead of 
the shock. 

The Mach number of the shock front is 

From (3.12), (3.13) and (3.14) 

3 -(e+,)+ 2 + T ~ 2 -  2y  yfi‘2 -- - - A ( 3  2 ’>” 5 + y M 2 ,  (3.15) 
2 1’2 A, z y - 1  PM @ =  

P i 2  dv 1 
v2 d f  - y M  2y M I’ ( - + ”> + M( 1 - i)) (3.16) 

3 d r  r dv 3 y / ( y - 1 )  d 
2 d t  v df - 2 P M  (3.17) 

E is a pure number, which, in terms of K ,  is 

(Y- 1 ) m i h K  
3y2W2(k T1)5/2 * 

Taking y as 513, and using the value of A, for zero current given by Spitzer, 
E is found to be 0.77. 

Chapman & Cowling give 

p / p l  = 05/’ and h/X, = T5j2, 

so that (3.15)) (3.16) and (3.17) become 
3 2 10 M 2  5 M 2  15 r5j2 dr 5 

5 + 3 M2,  (3.18) (8 + .) + - - - - - - - - - __ - 
v 3 v 3 v2 4 P M d f =  

+ M (  1 - ;), W 2  dv 3 3v(7+B) 
u2 d t -  5 M  1OM (3.19) 

These equations reduce to, 

(3.21) 
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4. SOLUTIONS 
‘rhe integral curves of equations (3.21)-(3.23) lie in a T ,  v, &space as f 

goes from - 03 to + 03. We draw the surfaces N ,  H and T = 0 and 
examine the solutions in planes corresponding to fixed values of one of the 
variables (e.g. figure 1 shows the v - 8  plane with T = 1). In the 3-space 

Figure 1. 0-v curves in T = 1 plane (not to scale). Arrows indicate f increasing. 
Strong shock, M = 10. 

the curves pass through two saddle points (1) and (2) where 5 = T 03, 

these being the intersections of the surfaces N ,  H ,  T = 0 by virtue of the 
boundary conditions. Saddle point (1) 
contains the intersection of the planes v, T ,  8 = 1 and saddle point (2) the 
planes v, T ,  8 = u2, T ~ ,  d2 respectively. In a 2-space, such as the plane shown 
in figure 1 ,  the point of intersection of the plane T = 1 with the surfaces 
N = 0 = H has been denoted by (2‘) to distinguish it from the corresponding 
3-space point (2). 

It is necessary to investigate the behaviour of the solutions close to the 
saddle points and we do this by a linearization. There are two distinct 
sets of solutions for the extreme physical cases, (u)  A4 % l-a very strong 
shock, and (b)  M,> l-a weak shock, approximating to an acoustic wave. 

Singular points exist at T = 0 = 8. 

Similarly (2”) corresponds to (2) in figure 2. 
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Equations (3.15)-(3.17) may be written 

10 4 
3 3v F(T, V) I 2 7  - - + - - - 

28 1 

(4.1) 

Figure 2. T - v  curves in 0 = 1 plane (not to scale). 
Strong shock, M = 10. 

We linearize at points i( = 1, 2) by substituting 

Arrows indicate 8 increasing. 

r = r i + A r  where Ar=Hexpcrf 
v =  vi+Av , 
0 = Oi+AB i (4.3) 

I AV = Kexput , 
A0 = Lexpuf , I 

in (4.1), obtaining a cubic equation in M. 

where G ,  = aG/av, etc. 
(42  + (bf - aG, - cd)cr2 + ( F ,  d -fF7 - bG,)cr + F, G ,  = 0, (4.4) 

Also, from (4.1), Ar/Av = ( G Y - u f ) / ( K d )  and 

(4.5) A B -  _ -  (2;; -- l ) A ~  - + - + - -  20M2(v-1) 4 
Av Av 3v2 9 v3 ’ 

Strong shocks M 9 1 

to find three (real) roots of a at points (1) and (2). 
We make use of the approximations M 2  1, r2 = (5/16)M2, vz = 4, 



2 2 EP 1 

5 i xl1 = - P M +  3 M + ... higher powers of M-l 

4 
5M K12 = M -  - +... 

4EP 
KI3 = - - 3&4 + ... , as [ = + 03. (4.6) 

A few typical integral curves are drawn on figures 1 and 2. The limiting 
integral curves which pass through both saddle points are shown by broken 
lines. T o  represent a physical solution satisfying the boundary conditions 
an integral curve must pass through both points (1) and (2). Also, v, r 
and 0 must remain real, positive, non-zero and finite all along the curve 

Reference to figures 1 and 2 shows that only one curve can be a physical 
solution. Also it must leave (1) with Ar/Av positive and arrive at (2) with 
AO/Av negative, the sense of direction deriving from the increase of 5. 
The values of Ar/Av and AOjAv are given in (4.5) in terms of a. On 
substituting the values of K from (4.6) it is found that the physical solution 
leaves (1) with a slope corresponding to a,, and arrives at (2) with a slope 
corresponding to aZ1. 

We may note that even in the acceptable solution entropy does not 
increase monotonically between states (1) and (2). Of course the net charge 
of entropy is always positive between (1) and (2). 

- - < < < + + .  

Weak shocks .M 1 
The analysis is similar to that for strong shocks, however, in this case 

we put M = 1 + m and expand in power series in m, assuming tn to be 
small. 

We find two roots of (4.4) at (1) and (2) 
4mP 

K,, = 2p+1, as 4 = - 03, 

4mP 
aal =i: - - 2P+ 1 ’ as ( =  +a. 

In each case AvlAr = 8, AelAr = 1.  

physically impossible solutions. 
first order of approximation, shows that r = O  throughout the wave. 

An analysis, as for strong shocks, shows that other roots of o( give 
An analytic solution, obtainable to this 
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Numerical integration for strong shocks 

A qualitative appraisal of the physical solution for a strong shock is 
of great help in the numerical integration between points (1) and (2). 
We notice from (3.21) and (3.22) that dT/dv = TIN ,- P < 1, unless N is 
small too, and we trace the required integral curve in figure 2. Leaving (1) 
the integral curve runs very close to H = 0 = N in the positive domain 
until it almost reaches the plane T = T ~ .  From some point A (say) the curve 
bends sharply away to approach (2). That the integral curve must proceed 
from A to (2) in a 6' - v plane is clear from figure 1, for A lies in a domain 
where N > 0 and v > 1 close to the point (1). 

- 5 0  

5 . 0  - 

4.0- 

V 
- 20 3.0- 

__ - I0 
PROTON M.F.P. 

BEHIND SHOCK. 

5 x IO-~ - 
Figure 3. Shock profile. Strong shock, M = 10. 

It is most important to note that the integral curves converge on point (2) 
in the 6' - v plane, but on point (1) in the T - v plane. To obtain a convergent 
solution by iteration one must take the following steps: 

(i) Assume T = T~ with 6' and v = 1 between points (1) and A. Find v 

(ii) Proceed from A to (2) solving for v and 8 numerically. 

(iii) Recalculate T moving back from (2) to (1) using the first approxi- 

(iv) Recalculate v and 8 starting at (l), through A to (2). The iteration 

(v) Integrate to obtain v, 8, T as function of 5. 
A solution has been obtained for a typical, very strong shock of Mach 

and 8 at A. 

mation to v and 6'. Calculate a second approximation to T. 

converges rapidly for T~ 1 (or M 9 1). 

number 10. The results are shown in figure 3. 
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5. STRONG SHOCKS 

Certain features of the structure of strong shocks may easily be deduced. 

The hot electron zone 

higher than the proton temperature. 
assume 8 = v + 1 and substitute in (3.23), which gives 

In  a zone between points (1) and A the electron temperature is much 
To estimate the profile of T ,  we 

dr 2 

This can be integrated directly and the solution made continuous at A. 
(5.1) has the correct asymptotic behaviour as 5 + - 00. The zone has a 
characteristic thickness L, given by 

where I,  is a mean free path for momentum transfer between protons behind 
the shock. Note that 1,/1 N T: - M4, so that L may be very large for 
strong shocks. 

Peak proton temperature 
A crude estimate of the peak proton temperature, Omax, before protons 

and electrons attain equilibrium at T, can be made by neglecting all heat 
interchange between protons and electrons, i.e. putting T = 7, and supposing 
too that 8 reaches Omax as v reaches vmax =4.  The computed solutions 
show that these assumptions are reasonable for the estimation of Omax. 

From (3.21) and (3.23), it is found that 
Omax = 1.287,. 

L - 1,/2P, 

This is an overestimate as the heat interchange from protons to electrons 
is neglected and 8 reaches Omax before v reaches vmax. 

The electric jield 
An electric field is caused by polarization imposed by the boundary 

conditions. In  a plasma an electric field, together with a density and thermal 
gradient of electrons, gives rise to a net electron drift or current relative 
to the ions. Spitzer (1956) has given the relation between them in terms 
of a coefficient of electrical conductivity Q and other coefficients which he 
has calculated. Evaluating these coefficients the expression for the electron 
current relative to the ions at rest is 

. 
ln a steady state the boundary conditions prohibit any total current and, 
therefore, j = 0 (neglecting any convected charge). From (5.2) 

Let Q = eV/kT,, V being the potential, so that 
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If T = T ~ ,  equation (5.4) may be integrated by parts to give 

In particular, 

285 

Q-Ql = ~~lOgv+1*70(7-1).  (5-5) 

Q 2 - Q l  = ~,(lOg4+ 1.70) = 3-17,. 

Equation (5.3) gives an estimate for E, so we are in a position to justify 
the neglect of the electrostatic force in (3.4) and the assumption that n, = 12, 

Since E - (KT)/(eZ), the ratio of the electrostatic 'pressure' E 2 / ( 8 r )  to the 
gas pressure p can be written "+) 2 , 

3 2 . q )  2 . 

SrP 
where d is the Debye length defined as d = (kT/4.rre2n)1/2. 

Also, using div E = 4re(ni - n,), 

n 

Over an enormous range of conditions Z B d, thus justifying the assumptions. 

6. CONCLUSIONS 
For a strong shock wave ( M  > 2), a quasi-equilibrium theory which 

assumes the protons and electrons to have separate equilibrium temperatures 
leads to the following results. 

(a)  Density and velocity and the proton temperature all change in one 
or two mean free paths (Z,) for momentum transfer in the hot (shocked) gas. 

(b )  The electron temperature changes more gradually over a larger 
distance (- Z2/2P= SZ,). This is equivalent to the mean free path for 
energy transfer between electrons and protons. 

( c )  The proton temperature rises to a maximum, which is only slightly 
higher than the final equilibrium temperature T,. 

( d )  Density and total pressure increase monotonically through the shock. 
( e )  An electric field is set up across the shock caused by the density 

A weak shock ( M  = 1) is broad ( L  - Z2/{4P(M- 1))) and in it 
and temperature gradients of the electrons. 

electrons and protons are always in thermal equilibrium. 

The author wishes to  thank Mr R. Pease and Dr W. Marshall for their 
helpful reading of this paper. 
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